
Math 20550 - Calculus III - Summer 2014
July 16, 2014

Exam 3

Name:

There is no need to use calculators on this exam. This exam consists of 11 problems on 11 pages.
You have 75 minutes to work on the exam. There are a total of 105 available points and a perfect
score on the exam is 100 points. All electronic devices should be turned off and put away. The only
things you are allowed to have are: a writing utensil(s) (pencil preferred), an eraser, and an exam.
No notes, books, or any other kind of aid are allowed (except your notecard). All answers should
be given as exact, closed form numbers as opposed to decimal approximations (i.e., π as opposed to
3.14159265358979...). You must show all of your work to receive credit. Please box your
final answers. Cheating is strictly forbidden. Good luck!

Honor Pledge: As a member of the Notre Dame community, I will not participate in, nor
tolorate academic dishonesty. My signature here binds me to the Notre Dame Honor Code:

Signature:
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Problem 1 (10 points). Compute the double integral∫ π
2

0

∫ π
2

y

sin(x2)dxdy

and sketch the region of integration.

Solution. The region is the shaded area here

The lines are: (red) y = x, (purple) x =
π

2
, (green) y =

π

2
, (orange) y = 0. Since the integral∫

sin(x2)dx

cannot be computed, we need to switch the order of integration. This gives∫ π
2

0

∫ π
2

y

sin(x2)dxdy =

∫ π
2

0

∫ x

0

sin(x2)dydx

=

∫ π
2

0

x sin(x2)dx
u=x2
=

1

2

∫ π2

4

0

1

2
sinu du

= −1

2
cosu

∣∣∣∣π
2

4

0

= −1

2
cos

π2

4
−
(
−1

2
cos 0

)
=

1

2

(
1− cos

π2

4

)
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Problem 2 (10 points).

(a - 7 points) Combine ∫ 2

0

∫ x

0

√
x2 + y2dydx+

∫ 2
√
2

2

∫ √8−x2
0

√
x2 + y2dydx

into a single computable integral. ( Hint: sketch the region of integration)
(b - 3 points) Compute the integral in (a).

Solution. Plotting the two regions on the same plane gives

where the grey region is the region of integration from the first integral and the green region is from
the second. Note that these two regions together give us the ”first eighth” of the circle of radius√

8 = 2
√

2 (i.e., 0 ≤ θ ≤ π

4
). Then, the integrals combine to, using polar coordinates:∫ 2

0

∫ x

0

√
x2 + y2dydx+

∫ 2
√
2

2

∫ √8−x2
0

√
x2 + y2dydx =

∫ π
4

0

∫ 2
√
2

0

r(r drdθ)

=

∫ π
4

0

∫ 2
√
2

0

r2 drdθ

=

∫ π
4

0

1

3
r3
∣∣∣∣2
√
2

0

dθ

=

∫ π
4

0

16
√

2

3
dθ =

4π
√

2

3
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Problem 3 (10 points). Rewrite the triple integral∫ 2

0

∫ √4−x2
0

∫ √8−x2−y2

√
x2+y2

xy dzdydx

using spherical coordinates. You do not need to compute it.

Solution. Let’s begin by just paying attention to the z-integral. The lower bound is the cone
z =

√
x2 + y2 and the upper bound is the sphere z =

√
8− x2 − y2 (so a sno-cone). Let’s square

both sides in both equations: z2 = x2 + y2 (cone) and z2 = 8− x2− y2 (sphere). We find that their
intersection is (by plugging one into the other) z2 = 8− z2 =⇒ 2z2 = 8 =⇒ z2 = 4 =⇒ z = 2. And
when z = 2, we get a circle of radius 2: x2 + y2 = 4. The shadow of this region in the xy-plane is
the disk of radius 2. Looking now at the bounds of the outer two integrals, we see we really only
want the piece of this disk in the first quadrant. Putting all this together, we want the piece of the
sno-cone in the first octant.

Now, rewrite everything in spherical coordinates. The sphere is ρ = 2
√

2, the cone is φ =
π

4
, and

we know that 0 ≤ θ ≤ π

2
. Thus, the rewritten integral is:∫ 2

0

∫ √4−x2
0

∫ √8−x2−y2

√
x2+y2

xy dzdydx =

∫ π
2

0

∫ π
4

0

∫ 2
√
2

0

(ρ cos θ sinφ)(ρ sin θ sinφ)ρ2 sinφ dρdφdθ

=

∫ π
2

0

∫ π
4

0

∫ 2
√
2

0

ρ4 cos θ sin θ sin3 φ dρdφdθ
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Problem 4 (10 points). A thin spring has the shape of the helix

x = t, y = cos t, z = sin t, 0 ≤ t ≤ 6π

and has linear density function ρ(x, y, z) = x2 + y2 + z2. Find the mass of the spring.

Solution. The curve is
r(t) = 〈t, cos t, sin t〉 , 0 ≤ t ≤ 6π

r′(t) = 〈1,− sin t, cos t〉 , ‖r′(t)‖ =
√

2.

The mass is given by

mass =

∫
C

ρ(x, y, z) ds

=

∫ 6π

0

ρ(r(t))‖r′(t)‖dt

=

∫ 6π

0

(
t2 + cos2 t+ sin2 t

)√
2dt

=
√

2

∫ 6π

0

(
t2 + 1

)
dt

=
√

2

(
1

3
t3 + t

)∣∣∣∣6π
0

dt

=
√

2
(
72π3 + 6π

)
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Problem 5 (10 points). Compute

∫
C

F · dr where F = (y2z + 2xz2)i + 2xyzj + (xy2 + 2x2z)k and

C has parametric equations x =
√
t, y = t+ 1, and z = t2, 0 ≤ t ≤ 1.

Solution. If you plug the curve into F, you get something which doesn’t look very pleasant. So,
let’s try and see if F is conservative. Then, if it is

F = (y2z + 2xz2)i + 2xyzj + (xy2 + 2x2z)k = 〈P,Q,R〉 = 〈fx, fy, fz〉
So

f =

∫
P dx = xy2z + x2z2 + g(y, z)

Compare this to Q:
fy = 2xyz + gy(y, z) = Q = 2xyz

so
gy(y, z) = 0 =⇒ g(y, z) = h(z).

Now, we compare to R:

fz = xy2 + 2x2z + h′(z) = R = xy2 + 2x2z

so
h′(z) = 0 =⇒ h(z) = constant

Let’s choose h(z) = 0, then
f = xy2z + x2z2

is a potential for F. Thus, we use the fundamental theorem of line integrals on this integral to get:∫
C

F · dr =

∫
C

∇f · dr

= f(r(1))− f(r(0)) = f(1, 2, 1)− f(0, 1, 0)

= 5− 0 = 5

�
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Problem 6 (10 points). Consider the integral

∫∫
R

x− 2y

3x− y
dA, where R is the parallelogram enclosed

by the lines x − 2y = 0, x − 2y = 4, 3x − y = 1, and 3x − y = 8. Use a change of coordinates to
rewrite the integral as a double integral over a rectangular region S. Sketch the region S. You do
not have to compute the integral.

Solution. Looking at the boundaries, choosing

u = x− 2y, v = 3x− y
seems like a good idea. The integrand becomes

x− 2y

3x− y
=
u

v
,

the Jacobian of this transformation is
∂(x, y)

∂(u, v)
=

1
∂(u,v)
∂(x,y)

=
1∣∣∣∣∣∣∣∣

1 −2

3 −1

∣∣∣∣∣∣∣∣
=

1

−1− (−6)
=

1

5

and the region S which maps to R under this transformation is

R:xy-plane S:uv-plane

x− 2y = 0 u = 0

x− 2y = 4 u = 4

3x− y = 1 v = 1

3x− y = 8 v = 8

which a sketch of is

So the integral becomes∫∫
R

x− 2y

3x− y
dA =

∫∫
S

u

v

∣∣∣∣15
∣∣∣∣ dudv =

∫ 8

1

∫ 4

0

u

5v
dudv
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Problem 7 (10 points). Compute the area inside the ellipse
x2

4
+ y2 = 1 using an appropriate type

of integral.

Solution. There are at least two ways to do this. The easiest is to use Green’s theorem, so that, if
E denotes the ellipse

Area(E) =

∫∫
E

dA =
1

2

∮
∂E

x dy − y dx

∂E has parametrization r(t) = 〈2 cos t, sin t〉 , 0 ≤ t ≤ 2π, which gives it the positive orientation.
Then

A(E) =
1

2

∫ 2π

0

[2 cos t d(sin t)− sin t d(2 cos t)]

=
1

2

∫ 2π

0

[
2 cos2 t dt+ 2 sin2 t dt

]
=

∫ 2π

0

dt = 2π
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Problem 8 (10 points). Find the volume enclosed by the cones z =
√
x2 + y2 and 2−z =

√
x2 + y2.

Solution. The solid bounded by the two cones is

This region is nicely described in cylindrical coordinates since then z = r is the bottom cone and
z = 2− r is the top cone. The shadow of this region in the xy-plane is x2 + y2 ≤ 1 since the cones
intersect at z = r = 1. Thus, the volume is

V (E) =

∫∫∫
E

dV =

∫ 2π

0

∫ 1

0

∫ 2−r

r

r dzdrdθ

=

∫ 2π

0

∫ 1

0

(2r − r2)drdθ =

∫ 2π

0

1

3
dθ =

2π

3

�
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Problem 9 (10 points). Compute the divergence and curl of the vector field

F = xyezi + yzexk.

Solution.

divF = ∇ · F =
∂

∂x
(xyez) +

∂

∂y
(0) +

∂

∂z
(yzex) = yez + yex

curlF =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

xyez 0 yzex

∣∣∣∣∣∣∣∣∣∣∣∣
= 〈zex, xyez − yzex,−xez〉

�

Problem 10 (5 points). Suppose that F is a conservative vector field on R3, and that F is C1.
Compute the curl of F.

Solution. If F is conservative, then F = ∇f = 〈fx, fy, fz〉, so

curlF =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

fx fy fz

∣∣∣∣∣∣∣∣∣∣∣∣
= 〈fzy − fyz, fxz − fzx, fyx − fxy〉 = 〈0, 0, 0〉
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Problem 11 (10 points). Compute

∫
C

(y cosx−xy sinx)dx+(xy+x cosx)dy where C is the triangle

traced out in moving from (0, 0) to (0, 4) to (2, 0) and back to (0, 0).

Solution. A sketch of C:

Since the integrand looks bad, we will try Green’s theorem. Also, notice the orientation is clockwise.
This creates a minus sign in Green’s theorem. So∫
C

(y cosx− xy sinx)dx+ (xy + x cosx)dy = −
∫∫

D

[(y + cosx− x sinx)− (cosx− x sinx)] dA

= −
∫∫

D

y dA = −
∫ 2

0

∫ 4−2x

0

y dydx

= −
∫ 2

0

1

2
y2
∣∣∣∣4−2x
0

dx = −
∫ 2

0

1

2
(16− 16x+ 4x2)dx

= −
∫ 2

0

(8− 8x+ 2x2)dx = −
(

8x− 4x2 +
2

3
x3
)∣∣∣∣2

0

= −
(

16− 16 +
16

3

)
= −16

3
�


